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Abstract

This paper presents a matchmaking framework for a new matchmaking component in the
ASK communication platform (http://www.ask-cs.nl/). The framework allows a variety of
matchmaking techniques to be applied in a single automated matchmaking system. A variety
of settings are generalized in a way that combines coalition formation with typical matching
settings such as perfect/maximal matching and bi/tri-partite matching. Our framework turns
out to be useful to categorize existing work on coalition formation and matching, but at the
same time allows us to identify new domains to be studied.

1 Introduction

The problem of matching together individuals in an effective way has been studied in a variety
of different settings, e.g., perfect/maximal matching [5, 6], bi/tri-partite matching [14, 9, 10], or
coalition formation [8, 1, 7, 11]. Originally, matchmaking is concerned with bringing together
individuals into couples [19, 2]. This particular setting is commonly represented using a graph.
The nodes of the graph are individuals and two individuals that are connected by an edge could
potentially form a match. In particular, a special case where the matching graph is bipartite is
studied extensively. This so-called bipartite matching problem has many applications.

Many situations occur in everyday life where one group must be mapped on another, e.g.,
employees/jobs, patients/doctors, consumers/products. At a first glance, it seems logical to model
these matching problems using bipartite graphs. However, even in typical bipartite circumstances
it is often useful to take additional dimensions into account. A patient, for example, goes to the
doctor for certain reason, i.e., a certain expertise is required. This extra dimension should be taken
into account, because the quality of the match depends on it. While the latter type of matching is
known as 3-dimensional matching, theory on matching in more than three dimensions can, as far
as we know, only be found in the area of coalition formation.

Coalition formation was originally studied in cooperative game theory. However, coalitions
are not formed to bring together individuals on a certain occasion, but rather to suggest possible
cooperations between players in a non-cooperative game. If two players are in the same coalition
this means that they are fully cooperative in order to maximize their collective payoff. That is, the
members of a coalition act as a single player in the game. Since players in a non-cooperative game
can always improve on their collective payoff by cooperating, it was traditionally assumed that
players will always form the largest possible coalition 1. The main concern of cooperative game
theory is therefore how to divide the collective gain over the members of the coalition.

More recently, there is an interesting trend in research on coalition formation to dispute the
traditional arguments. For reasons such as, e.g., bounded rationality, incomplete information, or
communication overhead in large coalitions, it is argued that it is sometimes undesirable to form
large coalitions. As a result, there is an increasing interest in games that are not superadditive. In
our opinion, this trend makes that matchmaking and coalition formation become more and more
related. Some researchers recognized this relationship between matching and coalition formation.

1The precise argument in traditional game theory is based on the observation that all games that are put in

coalitional form are superadditive.



In [16], for example, pair partnership matching of elements from an unordered group is treated as a
variant of the general coalition formation process. In pair coalition formation an agent is satisfied
with a coalition of itself and only one other partner.

A comprehensive framework that combines the many aspects of matchmaking and coalition for-
mation is still missing however. The aim of this paper is to fill in this gap. We present a matching
framework that concerns matching structures which contain variable-sized groups of individuals
and support different (possibly conflicting) opinions on the effectiveness of groups. The framework
(i) generalizes existing matchmaking and coalition formation models, (ii) allows new domains to be
studied, and (iii) is used for the implementation of a matchmaking system developed at Almende
B.V., a research company situated in Rotterdam. The outline of the paper is as follows. First, Sec-
tion 2 presents the generalized matchmaking framework. Next, Section 3 shows how the framework
is related to existing models from the literature. Then, in section 4 we give an illustration of how
the framework can be applied in a healthcare domain and we end in Section 5 with the conclusions.

2 A Generalized Matching Framework

In this section we present a matching framework that generalizes existing approaches to match-
making and cooperative game theory. First we provide some basic notions in our model, i.e. the
matching environment, matching evaluation, the matching structure and control mapping. Then
we define a notion of (un)stability. Finally we give some properties each representing different
aspects of matching.

2.1 The Basic Framework

In many applications, matchmaking is driven by the fact that individuals (e.g., users or other
entities) request to be matched to other individuals or items. In the health care domain, for
example, matchmaking concerns users requesting a particular medical treatment, preferably, by
the best doctor available.

In its most general form, the matching problem we are interested in consists of finding an
effective grouping of elements. We distinguish unordered and ordered groups. Given a countable
set E of elements, an unordered E-group is simply a finite subset of E. This means that the group
has no structure at all. An ordered E-group, on the other hand, is a vector (e1, . . . , ei, . . . , en)
such that each ei ∈ E. This means that each element has a certain role; the total order which is
associated with an ordered group is used to establish the roles of the elements in the group, e.g.
buyer or seller, patient or care provider, etc.

Matching elements are either passive elements, e.g. a book or a service, or active elements that
can be considered parts of which a particular individual (agent) has full control. Some individuals
may be represented by more than one element. These indviduals are said to be in control of these
elements. The idea is that active elements, in contrast to passive elements, take into account the
opinion, which their controlling individual has about the groups that are formed in the matching
process. The active elements of which an individual has control represent the different roles that the
individual possibly has, e.g., employee, patient, owner, seller, father, etc. The quadruple, containing
all individuals, active elements, passive elements and the control function for active elements, is
called the matching environment , or sometimes simply called the environment.

Definition 2.1 (Matching Environment) A (matching) environment M = (A, A, B, U) is a
quadruple with:

(i) A the set of agents that exercise control, and

(ii) A a countable set of all active elements, and

(iii) B a countable set of all passive elements, and

(iv) U a control mapping, given by the surjective function U : A → A that maps active elements
to agents.



Note, we will write E to refer to the set of all elements, both active and passive. If the control
function U is injective as well then it is said to be localized. In this situation, we will assume U

to be the identity mapping on A, i.e., A = A and U(a) = a for all a ∈ A. This means that every
agent is represented by one active element exactly.

Given a matching environment, matchmaking is concerned with finding a particular configura-
tion of elements into groups. The configuration must be such that the commitments of the elements
with respect to the group are clear. For this reason, we adopt an assumption that is common in the
literature: i.e., each element can belong to only one group at the same time [17, 13]. In this way,
the element can be fully committed to the group to which it belongs. Note that, in our framework,
this means that agents can still have control over elements in different groups.

Definition 2.2 (Matching Configuration) Given a matching environment M = (A, A, B,U),
with E = A ∪ B, a (matching) configuration in M is a set C of E-groups such that every e ∈ E

occurs in exactly one member of C.

In the literature, the concept of a matching configuration appears frequently, although under dif-
ferent names. Cooperative game theory, for example, often uses the term coalition structure [20].
In combinatorics the matching configuration is known under the name matching or perfect match-
ing [6].

Not all matching configurations are equally good. In general, there may be different opinions
on the value of a matching configuration. We define an M -opinion as follows, assuming that an
opinion on a matching configuration is formed by the opinions on the individual groups in the
configuration.

Definition 2.3 (M-opinion) Let M = (A, A, B,U) be a matching environment. An M -opinion
is a pair (V, v) where V ⊆

⋃
Γ and v : V → R.

The part of cooperative game theory that deals with so-called transferable utility(TU) games as-
sumes that there is only one opinion and that this single opinion is complete [12]. The reason being
that in a TU game all utilities are assumed to be monetary and therefore any disagreement about
the value of a coalition can be eliminated using side-payments, i.e., changing the distribution of the
collective gain over the members of a coalition.

Not everything can be compensated by side-payments however. In such settings, different
opinions on the values of coalitions can be distinguished. In an environment where different opinions
exist, what actually happens depends on how control is distributed over the different opinions. We
define an M -evaluation as a family of M -opinions where the index set, represented by the set of
agents, of the family is used to identify the different opinions.

Definition 2.4 (M-Evaluation) Let M = (A, A, B, U) be a matching environment. An M -
evaluation is a finite family V = {(Va, va)}a∈A of M -opinions.

It is not always possible that all mtaching configurations may form. There may be all sort of
constraints on possible combinations ofcoalitions. The collection of all possible combinations of
matching configurations that might be formed is called the skill set for the environment.

Definition 2.5 (Matching Skills) A collection Γ of matching configurations in M is called a
skill set for M .

We can now describe the matching problem in terms of matching environments M , skill sets Γ for
these environments and M -evaluations.

Definition 2.6 (Matching Problem) The matching problem is: given a matching instance I =
(M,Γ, V ) with M = (A, A, B, U) a matching environment, Γ a skill set, and V a M -evaluation,
find a matching configuration C ⊆ Γ with some desirable properties.

In the next section, we will introduce one such property, which we left unspecified in the above
definition.



vX vY vx vy vX vY vx vy

{X} 4 2 0 0 {X, y} 9 4 4 9
{Y } 2 4 0 0 {Y, y} 4 8 3 6
{x} 0 0 4 2 {X, x} 6 3 8 4
{y} 0 0 2 4 {Y, x} 0 2 2 0

Table 1: an M -evaluation

2.2 Strongly Unstable Matching Configurations

An interesting property of a matching configuration is its (un)stability. Intuitively, a matching
configuration is unstable, if there exists a coalition of agents that has enough influence over the
agents outside the coalition to deviate from the matching configuration in such a way that each agent
in the coalition is individually better off. This means that unstability depends on the possibility

of a transition C
A0→ C′ influenced by A0 ⊆ A from matching configuration C to C′. It is difficult

to provide an exact characterization of the above transition relation, because its depends on the
strategy adopted by the agents outside the coalition whether the transition will succeed or not.
Nevertheless, sufficient conditions can be given for which the transition is guaranteed to succeed
under the assumption of rational agents.

A sufficient condition on unstability that is often provided in the literature can be formulated
as follows. Let A0 ⊆ A be a coalition of agents. We now only consider transitions to matching
configurations where only isolated regroupings among the active elements under control of A0 are

allowed. That is, if C
A0→ C′ then there exists a subset C0 ⊆ C′ such that for every e ∈ E, e

occurs in C0 iff e is an active element under control of A0, i.e., U(e) ∈ A0. Under the above
restriction, A0 can guarantee that agents outside the coalition can only regroup the partial matching
configuration C′ \ C0. This means that A0 can guarantee a new coalition structure that belongs to
Γ0 = {C | C0 ⊆ C}. If in all these possibilities, each member of A0 is better off then C must have at
least one outgoing transition, and therefore, C is unstable.

The above considerations can be summarized in the following very strong notion of unstability.

Definition 2.7 (Strong Unstability) Let I = (M,Γ, V ) be a matching instance with M =
(A, A, B, U). A matching configuration C ∈ Γ is called I-unstable if there exists a subset A0 ⊆ A
and a partition C0 of A0 = {a ∈ A | U(a) ∈ A0} such that Γ0 = {C′ ∈ Γ | C0 ⊆ C} is non-empty
and: ∑

C∈C∩Va

va(C) < min
C′∈Γ0

∑

C∈C′∩Va

va(C),

for every a ∈ A0.

Let us give a simple example to illustrate that stability definitions in existing literature [4, 15]
provide a strong notion of unstability of matching configurations.

Consider a kind of stable marriage problem on a deserted island with only two men X and Y ,
and two women x and y. The possible couples that can be formed are {X, x}, {X, y}, {Y, x}, and
{Y, y}. Man X, for instance, has different preferences for {X, x} and {X, y}, but considers Y to be
his friend as well. This means that, although X prioritizes its own partner selection, he also cares
about whether {Y, x} or {Y, y} will be formed. Now we assume that: (i) the same holds for Y , (ii)
the women’s situation is symmetric to the men’s situation, and (iii) each man/woman considers the
situation of his/her friend to be at most half as important as his/her own situation. Under these
assumptions, an interesting example of a matching model is as follows.

Example 2.8 (Stable Marriage) Consider the matching instance I = (M,Γ, V ) where (i) M =
(A, A, B,U) with A = B = ({X, Y, x, y}and Γ = {{X}, {Y }, {x}, {y}, {X, x}, {X, y}, {Y, x}, {Y, y}},
(ii) U is the identity mapping on A, and (iii) V is the family of M -opinions shown in Table 1.
Note that for every C ∈ Γ, if x1 and x2 are friends and x1 occurs in C then vx1

≥ 2 · vx2
.

Now, consider the matching configuration C = {{A, a}, {B, b}}. Note that, vA(C) = vA({A, a})+
vA({B, b}) = 6 + 4 = 10, and vb(C) = vb({A, a}) + vb({B, b}) = 4 + 6 = 10. To check whether A

and b have an incentive to deviate from C, according to Definition 2.7, we need take into account



the minimum of A’s and b’s evaluations of Γ0 = {{{A, b}, {a,B}}, {{A, b}, {a}, {B}}}. This yields
min{vA({A, b}) + v({a,B}), v({A, b}) + v({a}) + v({B})} = min{9 + 0, 9 + 0 + 2} = 9. But 10 ≥ 9,
which means that the formation of A0 = {A, b} is not sufficient to show C’s unstability. However,
this conclusion is based on the formation of {{A, b}, {a,B}}, and A could know that B and a

would prefer to stay alone then to join together. This, {{A, b}, {a}, {B}} is actually the only
matching configuration that is feasible within Γ0. Based on this observation, it is not difficult to
see that C should be classified as unstable. Therefore, we may conclude that Definition 2.7, in some
circumstances, provides a notion of unstability that is too strong.

2.3 Properties of the Framework

Given a triple I = (M,Γ, V ) with M a matching environment, Γ the skill set, and V an M -
evaluation, the matching problem in general searches for a matching configuration with some de-
sirable properties. It depends on the structure of I which are the relevant properties that the
matching problem should take into account:

(i) a matching instance I is called ordered/unordered, if all the E-groups in the members of Γ
are ordered/unordered; otherwise I is called mixed.

(ii) a matching instance I is called n-partite, if there exists a partition {Ei}1≤i≤n of E such that
every E-group belonging to one of the members of Γ contains exactly one element from every
Ei for 1 ≤ i ≤ n;

(iii) given subset N ∈ N, a matching instance I is called is called N -sized, if for every E-group
that occurs in Γ has a size that belongs to N ;

(iv) a matching instance I is globalized if for every a1, a2 ∈ A, U(a1) = U(a2), and I localized if U

is injective;

(v) a matching instance I is bounded, if for every E-group C in Va, there exists a b ∈ C ∪A, such
that U(b) = a; alternatively if I is not bounded, we call I social.

As a convention we assume the n-partite matching instance is either ordered or unordered. Note
that a strict n-partite matching instance is also singleton N -sized, where N = {n}. These above
properties allow us to categorize existing approaches to matching, but at the same time allows us
to identify new domains to be studied.

3 Matching Framework & Related Work

As mentioned earlier, in existing literature, different terms are used to refer to the matching frame-
work we defined. It is interesting to see that the model we present is able to capture essentials
of different approaches to matching. In this section, we give a description of existing approaches
to matching and coalition forming and show how it relates to our work. First, we present the
relation between stable marriage and our framework. Second, we discuss matching as it is of-
ten approached in combinatorial mathematics. Third, we illustrate how cooperative game theory
commonly approaches the matching problem.

3.1 Matching : Stable Marriage

Stable marriage can be considered as a special case of a matching instance I = (M,Γ, V ). A stable
marriage setup is typically represented by two finite sets A1 and A2 of n elements each, and for
each member in the one set, a preference relation on the members in the other set. In terms of our
framework this boils down to a matching instance I that is bipartite, localized, bounded and where
E is finite.

Traditionally stable marriage uses total orders instead of M -opinions to represent the preferences
of individuals [3]. This means that a family {�x}x∈A is given, where y1 �x y2 iff the vx({x, y1}) ≤
vx({x, y2}). Using the total orders, the stability condition is defined as follows.



Definition 3.1 (Unstable Marriage) Given a matching instance I = (M,Γ, V ), a matching
configuration C in I is called unstable, if there existst two E-groups {X, x} and {Y, y}, such that
x �X y and Y �y X.

It can be proven that the avove definition is a special of Definition 2.7.
A variant on stable marriage is the, non-bipartite, stable roommate problem. We can represent

this variant by a matching instance that is {2}-sized but not bipartite. For the stable roommate
problem there does not always exist a stable matching configuration.

3.2 Matching : Maximum Cardinality

Combinatorial matching algorithms usually deal with matching problems of forming unordered
pairs as groups. Garey and Johnson, for example, define the matching problem as follows [6].

Definition 3.2 (Matching Problem(Garey and Johnson)) Given a graph G = (V,E), find a
set E′ ⊆ E of edges such that every vertex v ∈ V is incident with at most one edge in E′; if every
vertex is incident with at least on edge in E′ as well, then a matching M of E′ is called perfect.

It can be seen that the matching problem can be modelled using an unordered, {2}-sized match-
ing instance. Since the matching problem searches a so-called perfect matching, where every indi-
vidual is matched in a pair, there are no M -opinions at all. That is, every element is passive.

An optimization variant of the matching problem is called maximal matching. In the maximal
matching, the matching instance is unordered as well, but {1, 2}-sized: we have both the singleton
sets and unordered pairs as E-groups. The maximum matching searches for a maximum cardinality
set of matched pairs. This is modelled by a globalized control mapping and a single M -opinion
that assigns 1 to every unordered pair and 0 to every singleton set.

Another variant on this matching problem is known as weighted matching [18]. A graph can be
extended by labeling each edge E of the graph G with a weight. Here, the weights can express a
distribution over the preference of a vertex for its incident edges. The goal is to (globally) optimize
the sum of weights. Similarly to the maximum cardinality matching, the weights can easily be
incorporated in the M -opinions.

3.3 Matching : Coalition Formation

In game theory, the approach to the matching problem is different from the combinatorial view.
In cooperative game theory, for example, games are considered in their so-called coalitional form.
The relation of matching to coalition formation is already noticed in [16] where pair partnership
matching of elements from an unordered group is esentially treated as a variant to the general
coalition formation process. In pair coalition formation an agent is satisfied with a coalition of
itself and only one other partner.

Let N = {1, 2, . . . , n} be the set of players. Any non-empty subset S of N is a called a
coalition. A coalition S can obtain a total utility v. This utility can be distributed among the
members(players) of S. Collectively the utilities of all coalitions are represented by a value function.

Definition 3.3 (Value Function) The value function in a n-person game is given by v : 2A → R;
For each coalition S ⊆ N , v(S) representing the amount of utility that the members of S, collectively,
can gain from the coalition.

The idea is to find a partition C = {A1, . . . , An} of A (i.e., the coalition structure) such that the
sum of all corresponding values are maximized, i.e., v(A1) + · · · + v(An) is maximized.

A game in coalitional form can be represented by a unordered, globalized, bounded matching
instance such that E is finite and Γ contains all partitions of 2A.

4 Application Scenario: Home Health Care

The generalized matching framework presented in this paper has been applied to further develop
a matchmaking component, called the Matcher, within the ASK communication platform. The
development and implementation of this novel matching component is carried out as a part of



the research within Almende. In particular, we focus on a health care scenario that is studied
in the context of the “Luister” project. In “Luister”, the aim is to realize a personalized and
flexible health care service at Humanitas, a national member-based institute for social services and
community development. The matchmaking of health care demand and provision is dependent on
the availability, skills and preferences of patients and carers. Patients can articulate their health care
demand through a speech interface, i.e., voice recognition on a telephone connection. Consequently
the patient uttering a demand is matched to a suitable and available carer. This results in an
appointement with the carer, who will be notified of this commitment automatically.

The participants in a match are enabled to express their preferences on the actual experienced
health care provision. After the scheduled service is delivered, feedback from both patient and
carer is requested. One of the projects research questions is how to use feedback to improve service
quality through personalization.

Initially, we use an ordered bipartite matching instance I to model this domain where the
partition {Ap, Ac} consists of a finite set of patients Ap and a finite set of carers Ac. We assume
that (i) I is localized, (ii) the patients are active elements, and (iii) the carers can be both active
and passive. We could further refine the model of the scenario by partitioning the carers into
two groups: professionals Ac,p and volunteers Ac,v; the Matcher is designed to make these kind of
refinements on-the-fly while the system is running.

Now let us say that professionals are not allowed to have preferences for patient (professional
ethics does not allow them to refuse treatment to an individual in need for care), i.e. every element
ai ∈ Ac,p is passive, while preferences of volunteers are taken into account in the matching procedure,
i.e. every element aj ∈ Ac,v is active, since a pleasant match may motivate them to provide as
much care as possible.

Using the flexibility of our framework, the matching component can dynamically add other
matching classes or individuals. Additional context that is relevant for the matching can be included
whenever this information becomes available. The additional context can be practically everything:
e.g., place, time, language, etc. In this way, the system is able to deal dynamically with multi-
dimensional matching in variable dimensions.

5 Conclusion

In this paper, we presented a general matching framework covering some representative matching
approaches in literature. The main goal of this model is to combine the properties of different
matching approaches. The need for such a general model arises in the light of a real-life application
scenarios such as presented in section 4.

We have defined a generalized model and criteria for determining the quality of a matching
configuration. We related these criteria to the ones used in combinatorial matching algorithms
and cooperative game theory. One of the interesting aspects of our model is that our matching
configuration can contain groups of variable size. It allows contextual matching, where certain
dimensions of the context can be included or discarded depending on the type of match. In addition,
our approach carefully takes into account different, possibly conflicting, opinions on the quality of
a match, i.e., the effectiveness of a group.

Several aspects of our model are interesting for further research. In the near future, we want
to explore new domains with unbounded control mapping. Research will focus on the effect of
opinions of an individual about matches in the matching configuration in which it is not involved.

Next to this, we would like to explore techniques for forecasting of missing evaluations. In
society people can base their (local) decision making on external information. Friends, colleagues,
like-minded people or others they trust can make recommendations or suggestions for good restau-
rants, interesting books or a pleasant dentist. An individual consults this group of acquaintances
for recommendations on possible matches. In particular, we are interested in systems where the
forecasting is localized and distributed over a (possibly large) collection of personal agents.
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